Which organelle captures light energy




















The energy that is harnessed from photosynthesis enters the ecosystems of our planet continuously and is transferred from one organism to another. Therefore, directly or indirectly, the process of photosynthesis provides most of the energy required by living things on earth. Photosynthesis also results in the release of oxygen into the atmosphere. In short, to eat and breathe, humans depend almost entirely on the organisms that carry out photosynthesis.

Click the following link to learn more about photosynthesis. Some organisms can carry out photosynthesis, whereas others cannot. An autotroph is an organism that can produce its own food. Plants are the best-known autotrophs, but others exist, including certain types of bacteria and algae Figure 5. Oceanic algae contribute enormous quantities of food and oxygen to global food chains. Plants are also photoautotrophs, a type of autotroph that uses sunlight and carbon from carbon dioxide to synthesize chemical energy in the form of carbohydrates.

All organisms carrying out photosynthesis require sunlight. Heterotrophs are organisms incapable of photosynthesis that must therefore obtain energy and carbon from food by consuming other organisms. Even if the food organism is another animal, this food traces its origins back to autotrophs and the process of photosynthesis.

Humans are heterotrophs, as are all animals. Heterotrophs depend on autotrophs, either directly or indirectly. Deer and wolves are heterotrophs. A deer obtains energy by eating plants. A wolf eating a deer obtains energy that originally came from the plants eaten by that deer. Indeed, the fossil fuels we use to power our world today are the ancient remains of once-living organisms, and they provide a dramatic example of this cycle at work.

The carbon cycle would not be possible without photosynthesis, because this process accounts for the "building" portion of the cycle Figure 2. However, photosynthesis doesn't just drive the carbon cycle — it also creates the oxygen necessary for respiring organisms. Interestingly, although green plants contribute much of the oxygen in the air we breathe, phytoplankton and cyanobacteria in the world's oceans are thought to produce between one-third and one-half of atmospheric oxygen on Earth.

Photosynthetic cells contain special pigments that absorb light energy. Different pigments respond to different wavelengths of visible light. Chlorophyll , the primary pigment used in photosynthesis, reflects green light and absorbs red and blue light most strongly. In plants, photosynthesis takes place in chloroplasts, which contain the chlorophyll. Chloroplasts are surrounded by a double membrane and contain a third inner membrane, called the thylakoid membrane , that forms long folds within the organelle.

In electron micrographs, thylakoid membranes look like stacks of coins, although the compartments they form are connected like a maze of chambers. The green pigment chlorophyll is located within the thylakoid membrane, and the space between the thylakoid and the chloroplast membranes is called the stroma Figure 3, Figure 4.

Chlorophyll A is the major pigment used in photosynthesis, but there are several types of chlorophyll and numerous other pigments that respond to light, including red, brown, and blue pigments. These other pigments may help channel light energy to chlorophyll A or protect the cell from photo-damage. For example, the photosynthetic protists called dinoflagellates, which are responsible for the "red tides" that often prompt warnings against eating shellfish, contain a variety of light-sensitive pigments, including both chlorophyll and the red pigments responsible for their dramatic coloration.

Figure 4: Diagram of a chloroplast inside a cell, showing thylakoid stacks Shown here is a chloroplast inside a cell, with the outer membrane OE and inner membrane IE labeled. Other features of the cell include the nucleus N , mitochondrion M , and plasma membrane PM. At right and below are microscopic images of thylakoid stacks called grana. Note the relationship between the granal and stromal membranes.

Protein import into chloroplasts. Nature Reviews Molecular Cell Biology 5, doi Figure Detail. Photosynthesis consists of both light-dependent reactions and light-independent reactions. In plants, the so-called "light" reactions occur within the chloroplast thylakoids, where the aforementioned chlorophyll pigments reside.

When light energy reaches the pigment molecules, it energizes the electrons within them, and these electrons are shunted to an electron transport chain in the thylakoid membrane. Meanwhile, each chlorophyll molecule replaces its lost electron with an electron from water; this process essentially splits water molecules to produce oxygen Figure 5.

Figure 5: The light and dark reactions in the chloroplast The chloroplast is involved in both stages of photosynthesis. The light reactions take place in the thylakoid. There, water H 2 O is oxidized, and oxygen O 2 is released.

The dark reactions then occur outside the thylakoid. The products of this reaction are sugar molecules and various other organic molecules necessary for cell function and metabolism.

Note that the dark reaction takes place in the stroma the aqueous fluid surrounding the stacks of thylakoids and in the cytoplasm. The thylakoids, intake of water H 2 O , and release of oxygen O 2 occur on the yellow side of the cell to indicate that these are involved in the light reactions. The carbon fixation reactions, which involve the intake of carbon dioxide CO 2 , NADPH, and ATP, and the production of sugars, fatty acids, and amino acids, occur on the blue side of the cell to indicate that these are dark reactions.

An arrow shows the movement of a water molecule from the outside to the thylakoid stack on the inside of the chloroplast. Another arrow shows light energy from the sun entering the chloroplast and reaching the thylakoid stack. An arrow shows the release of an oxygen molecule O 2 from the thylakoid stack to the outside of the chloroplast. Once the light reactions have occurred, the light-independent or "dark" reactions take place in the chloroplast stroma. During this process, also known as carbon fixation, energy from the ATP and NADPH molecules generated by the light reactions drives a chemical pathway that uses the carbon in carbon dioxide from the atmosphere to build a three-carbon sugar called glyceraldehydephosphate G3P.

So, the hydrogen ions inside each thylakoid really want to escape in order to even out the concentrations on either side of that inner membrane. But charged particles can't pass through a phospholipid bilayer just anywhere — they need some kind of channel to go through, just like electrons need a wire to make it from one side of the battery to the other.

So, just like you can put an electric motor on that wire, and make electrons drive a car, the channel the hydrogen ions pass through is a motor. These protons flow through the channel provided for them, like water flowing through a hydroelectric dam down an elevational gradient, and that motion makes enough energy to create a reaction that creates ATP, which is another short-term storage form of energy.

Now the original light energy has been converted into short-term storage chemical energy in the form of both NADPH and ATP, which will be useful later in the dark reactions also known as the Calvin Cycle or the carbon-fixation cycle within the chloroplast, all of which go down in the stroma because this fluid contains an enzyme that can convert NADPH, ATP and carbon dioxide into sugars that either feed the plant, assist in respiration, or are used to produce cellulose.

The oxygen gas is breathed off, and the NADPH and ATP aren't used to do other stuff within the cell — instead, both are passed to the carbon-fixation cycle, where other enzymes break them down, extract that energy, and use it to build glucose and other organic molecules.

Because chlorophyll is great at absorbing red and blue light , but doesn't absorb green light, leaves appear green to our eyes because that's the color of light that bounces off of it. Sign up for our Newsletter! Mobile Newsletter banner close. Mobile Newsletter chat close. Mobile Newsletter chat dots. Mobile Newsletter chat avatar. The researchers hypothesize that a lower channel density may have A research team has established their global geographic distribution using DNA data and a probabilistic model.

Researchers have shown that it is possible to identify individual proteins with single-amino acid Owners may be underestimating their dog's Some major examples of crops with these so-called 'transgenes' include Reducing the Cost of Plant Improvement. Print Email Share.



0コメント

  • 1000 / 1000